Literature Review: Disability-friendly kiosk interfaces

MotionInput 3.2 - COMP0016 Team 37

Interactive Kiosks

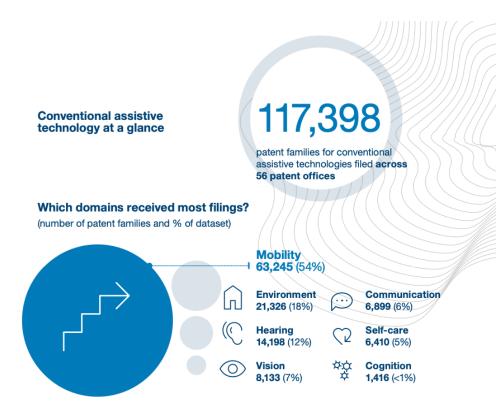
Interactive Kiosks

- Computer systems, commonly with a touchscreen, that combine specialized hardware and software
- Enable several unique tasks such as ordering, navigation and transactions^[18]
- Provide many benefits such as selfservice, improving customer experience, reducing staff workload, and managing a larger volume of customers^[7]

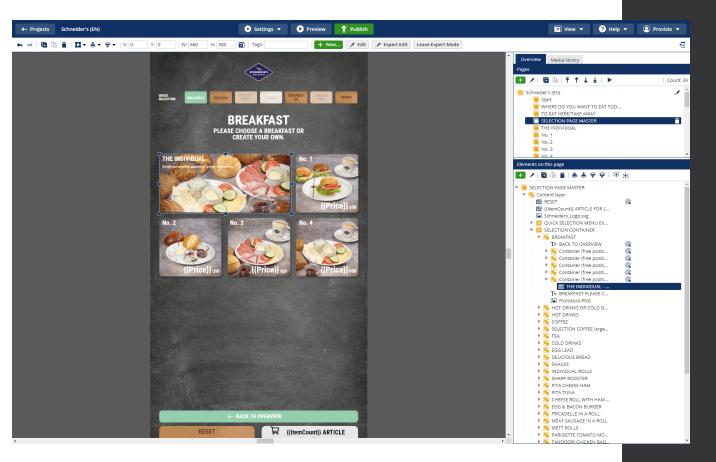
Kiosk Hardware

- Most are bespoke and there is a lack of standardization due to wide range of business requirements^[7]
- Common customizations include screen size, orientation, and enclosure design and construction^[17]
- Can also include additional hardware^[9]:
 - Telephones
 - Cameras
 - Payment Terminals
 - Thermal Cameras

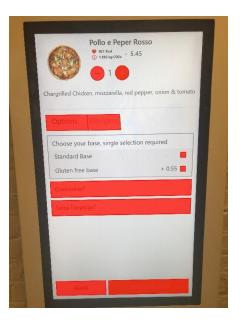
Kiosk Software


- Are usually standard websites running in sandboxed browsers or operating systems^[5]
- Commonly recommended design guidelines^[13]:
 - Main menu
 - Hierarchical menu structure
 - Limited menu nesting (< 3)
 - Separating functionality into panels
 - Dedicated navigation buttons (back, info, home)

Accessibility features in kiosks


- Still lacking in accessibility features and disproportionally focused on one type of disability^[10]
- Common recommendations for improvement^[13]:
 - Larger text and images
 - Avoiding small clickable zones
 - Color-blind adjustments
 - High contrast
 - Text-to-speech

Kiosk Software Development Tools

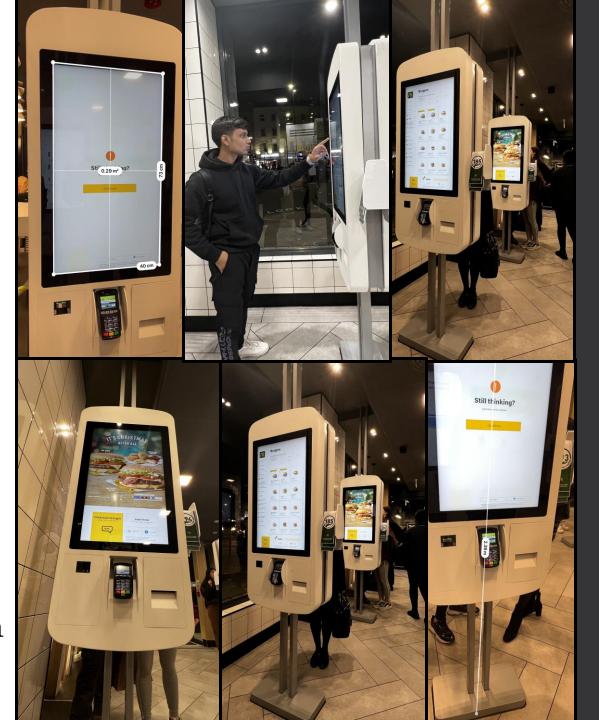

Example: SiteKiosk^[5]

- Focus on large, clickable elements
- Menus and pages connected in clear hierarchy (< 3 layers of nesting)
- Include predefined templates to encourage recommended design patterns
- Allow users to import structured file formats (JSON) and generate menu hierarchy

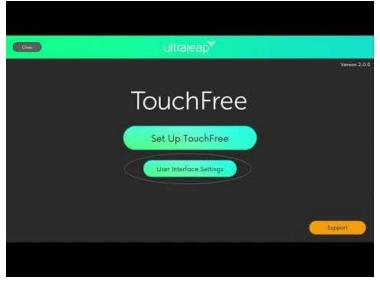
Evaluation of real-life examples

UCL Pizza

- Used for ordering. Multiple layers of sub-menus, with many options on each page
- Elements are large, clearly distinguishable, and easily clickable
- Navigation buttons (home, back, info) and menu panels are present
- Interaction with each element is limited to just tapping it
- Illustrates design of kiosks being guided by responsiveness and simplicity


Tesco Supermarket

- Includes additional hardware (barcode scanners, weighing scales) but largely similar to previous example
- Menu items must be validated by scanning and weighing
- Prominent staff assistance feature for unauthorized tasks (removing items, reweighing, adding bags)
- Staff assistance is also required for legal reasons (purchasing alcohol, cigarettes, other prohibited items)


McDonalds

- Extremely similar to UCL Pizza kiosk since it serves the same purpose (ordering food)
- However, the user interface is more complicated (smaller elements, a lot more scrolling involved, automated suggestions etc.)
- Kiosk hardware is also less accommodating. The touchscreen is extremely tall (73 cm) and is significantly raised off the ground, making it inaccessible to most children and wheelchair users

Improving accessibility

- Existing kiosk design principles (large elements, single taps) make them amenable to alternative modes of input
- Existing software allow mappings between hand, eye and face gestures to mouse input^{[19][20]}
- A lot of complications (distinguishing start and end of gestures, smooth scrolling, when to map clicks) have been ironed out with increased research into the field^[4]
- However, direct implementation with kiosks still raises some questions (determining staff input vs customer input, non-standard distance and height)

References

- Cerritos, O.K.I.O.K.I. 13845 A.B. and p: 562 924 2644, C. 90703 p: 800 927 8063 (no date) 'Covid-19 Kiosk -Temperature Screening & Self-Service | Olea Kiosks Inc.', *OLEA*. Available at: <u>https://www.olea.com/back-tobusiness-covid-19-solutions/</u> (Accessed: 5 December 2022).
- 2. Chang, H.-L. and Yang, C.-H. (2008) 'Do airline self-service check-in kiosks meet the needs of passengers?', *Tourism Management*, 29(5), pp. 980–993. Available at: <u>https://doi.org/10.1016/j.tourman.2007.12.002</u>.
- 3. Djado, K. *et al.* (2014) 'Gesture interface for an interactive kiosk', in *Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry*. New York, NY, USA: Association for Computing Machinery (VRCAI '14), pp. 165–170. Available at: <u>https://doi.org/10.1145/2670473.2670487</u>.
- 4. Ertugrul, E., Li, P. and Sheng, B. (2020) 'On attaining user-friendly hand gesture interfaces to control existing GUIs', *Virtual Reality & Intelligent Hardware*, 2(2), pp. 153–161. Available at: <u>https://doi.org/10.1016/j.vrih.2020.02.001</u>.
- 5. Get the No.1 Kiosk Software | SiteKioskTM (no date). Available at: <u>https://www.sitekiosk.com/sitekiosk/</u> (Accessed: 5 December 2022).
- 6. Ida, M. *et al.* (2004) 'A noise-robust speech input interface for information kiosk terminals', *Electronics and Communications in Japan (Part II: Electronics)*, 87(12), pp. 51–61. Available at: <u>https://doi.org/10.1002/ecjb.20135</u>.
- 7. Interactive Kiosk Solutions and Technology (no date) Intel. Available at: <u>https://www.intel.com/content/www/uk/en/internet-of-things/iot-solutions/kiosk/interactive-and-digital-kiosks.html</u> (Accessed: 5 December 2022).
- 8. Jones, R. (2009) 'The role of health Kiosks in 2009: Literature and informant review', *International Journal of Environmental Research and Public Health*, 6(6), pp. 1818–1855. Available at: <u>https://doi.org/10.3390/ijerph6061818</u>.
- 9. Karpov, A.A. and Ronzhin, A.L. (2009) 'Information enquiry kiosk with multimodal user interface', *Pattern Recognition and Image Analysis*, 19(3), pp. 546–558. Available at: <u>https://doi.org/10.1134/S1054661809030225</u>.

- 10. Lyu, Y. *et al.* (2015) 'Designing and optimizing a healthcare kiosk for the community', *Applied Ergonomics*, 47, pp. 157–169. Available at: <u>https://doi.org/10.1016/j.apergo.2014.08.018</u>.
- 11. Magazine, S. (no date) *How do military aircraft helmets track where a pilot is looking?*, *Smithsonian Magazine*. Available at: https://www.smithsonianmag.com/air-space-magazine/how-do-military-aircraft-helmets-track-where-a-pilot-is-looking-20246887/ (Accessed: 6 December 2022).
- 12. Maguire, M. (2001) 'Methods to support human-centred design', *International Journal of Human Computer Studies*, 55(4), pp. 587–634. Available at: <u>https://doi.org/10.1006/ijhc.2001.0503</u>.
- 13. Maguire, M.C. (1999) 'A review of user-interface design guidelines for public information kiosk systems', *International Journal of Human-Computer Studies*, 50(3), pp. 263–286. Available at: <u>https://doi.org/10.1006/ijhc.1998.0243</u>.
- 14. Onibere, E.A. *et al.* (2001) 'Human-computer interface design issues for a multi-cultural and multi-lingual English speaking country Botswana', *Interacting with Computers*, 13(4), pp. 497–512. Available at: <u>https://doi.org/10.1016/S0953-5438(00)00052-7</u>.
- 15. Rehg, J.M., Loughlin, M. and Waters, K. (1997) 'Vision for a smart kiosk', in *Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pp. 690–696. Available at: <u>https://doi.org/10.1109/CVPR.1997.609401</u>.
- 16. Sandnes, F.E. *et al.* (2010) 'User interface design for public kiosks: An evaluation of the taiwan high speed rail ticket vending machine', *Journal of Information Science and Engineering*, 26(1), pp. 307–321.
- 17. Selecting the right touch screen to maximize results (2010) <u>www.kioskmarketplace.com</u>. Available at: <u>https://www.kioskmarketplace.com/blogs/selecting-the-right-touch-screen-to-maximize-results/</u> (Accessed: 5 December 2022).
- 18. Wang, Y.-S. and Shih, Y.-W. (2009) 'Why do people use information kiosks? A validation of the Unified Theory of Acceptance and Use of Technology', *Government Information Quarterly*, 26(1), pp. 158–165. Available at: <u>https://doi.org/10.1016/j.giq.2008.07.001</u>.
- *How Tobii Dynavox eye tracking works* (2016). Available at: <u>https://www.youtube.com/watch?v=Y7_f-pR8SBY</u> (Accessed: 7 December 2022).
- 20. Interactive Kiosk Software: Set up TouchFree 2.0 | Ultraleap (2021). Available at: https://www.youtube.com/watch?v=_utTJ96NM48 (Accessed: 7 December 2022).